
www.umbc.edu

CMSC202
 Computer Science II for Majors

Lecture 12 –

Linked Lists

Dr. Katherine Gibson

www.umbc.edu

Last Class We Covered

• Inheritance

• Object relationships

– is-a (Inheritance)

– has-a (Composition and Aggregation)

 2

www.umbc.edu

Any Questions from Last Time?

www.umbc.edu

Today’s Objectives

• To cover linked lists in detail

– Traversal

– Creation

– Insertion

– Deletion

4

www.umbc.edu

Linked Lists vs Vectors

www.umbc.edu

What is a Linked List?

• Data structure

– Dynamic

– Allow easy insertion and deletion

• Uses nodes that contain

– Data

– Pointer to next node in the list

6

www.umbc.edu

Example Linked List

7

data

link

head

data

link

data

link

data

link

NULL

In these diagrams, a doubly-
outlined box indicates a pointer.

tail

www.umbc.edu

Why Use Linked Lists?

• We already have vectors!

• What are some disadvantages of an vectors?

– Inserting in the middle of an array takes time

– Deletion as well

– Sorting

– Requires a contiguous block of memory

8

www.umbc.edu

Representation in Memory

9

Array location
in memory

NULL

First node of
Linked List

Each cell is a
block of memory

www.umbc.edu

(Dis)Advantages of Linked Lists

• Advantages:

– Change size easily and constantly

– Insertion and deletion can easily happen
anywhere in the Linked List

– Only one node needs to be contiguously stored

• Disadvantages:

– Can’t access by index value

– Requires management of memory

– Pointer to next node takes up more memory

10

www.umbc.edu

Nodes

www.umbc.edu

Nodes

• A node is one element of a Linked List

• Nodes consist of two main parts:

– Data stored in the node

– Pointer to next node in list

• Often represented as classes

12

data

link

www.umbc.edu

Code for Node Class

class Node

{

 String name;

 int testGrade;

 Node *link;

 // constructor

 // accessors

 // mutators

};

13

link

testGrade

name

link can point to other nodes

two options:
1. another Node
2. NULL

NULL

www.umbc.edu

Linked List Overview

www.umbc.edu
15

www.umbc.edu

Example Linked List

16

NULL

link

DUMMY

DUMMY

link

testGrade

name

link

testGrade

name

link

testGrade

name

link

m_head

www.umbc.edu

Important Points to Remember

• Last node in the Linked List points to NULL

• Each node points to either another node in
the Linked List, or to NULL

– Only one link per node

17

www.umbc.edu

Managing Memory with LLs

• Hard part of using Linked Lists is ensuring that
none of the nodes go “missing”

• Think of Linked List as a train

– (Or as a conga line of Kindergarteners)

• Must keep track of where links point to

• If you’re not careful, nodes can get lost in
memory (and you have no way to find them)

18

www.umbc.edu

Linked List Functions

• What functions does a Linked List
class implementation require?

• Linked_List constructor

• insert()

• remove()

• printList()

• isEmpty()

 19

www.umbc.edu

Linked Lists’ “Special” Cases

• Linked Lists often need to be handled
differently under specific circumstances

– Linked List is empty

– Linked List has only one element

– Linked List has multiple elements

– Changing something with the first or last node

• Keep this in mind when you are coding

– Dummy nodes alleviate some of these concerns

20

www.umbc.edu

Creating a Linked List

21

www.umbc.edu

Traversing the List

• To control our traversal, we’ll use a loop

– Initialization, Termination Condition, Modification

1. Set CURR to the first node in the list

2. Continue until we hit the end of the list (NULL)

3. Move from one node to another
(using m_next)

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT CURR NULL

link

91

Bob

link

94

Eve

NULL

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

Demonstration of Traversal

link

DUMMY

DUMMY

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

 // ignore, dummy node



www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

 // print information (Bob)



www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

 // print information (Eve)



www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

NULL

www.umbc.edu

link

DUMMY

DUMMY

Demonstration of Traversal

FRONT

link

91

Bob

link

94

Eve

NULL

CURR

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) {

NULL


} // exit the loop

www.umbc.edu

Insertion and Deletion

35

www.umbc.edu

Announcements

• Project 3 is out – get started now!

– It is due Thursday, March 31st

36

