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Last Class We Covered 

• Inheritance 

 

• Object relationships 

– is-a (Inheritance) 

– has-a (Composition and Aggregation) 
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Any Questions from Last Time? 
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Today’s Objectives 

• To cover linked lists in detail 

– Traversal 

– Creation 

– Insertion 

– Deletion 
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Linked Lists vs Vectors 
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What is a Linked List? 

• Data structure 

– Dynamic 

– Allow easy insertion and deletion 
 

• Uses nodes that contain 

– Data 

– Pointer to next node in the list 

 

6 



www.umbc.edu 

Example Linked List 
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data 
 
 

link 

head 

data 
 
 

link 

data 
 
 

link 

data 
 
 

link 

NULL 

In these diagrams, a doubly-
outlined box indicates a pointer. 

tail 
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Why Use Linked Lists? 

• We already have vectors! 

 

• What are some disadvantages of an vectors? 

– Inserting in the middle of an array takes time 

– Deletion as well 

– Sorting  

– Requires a contiguous block of memory 
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Representation in Memory 
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Array location 
in memory 

NULL 

First node of 
Linked List 

Each cell is a 
block of memory 
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(Dis)Advantages of Linked Lists 

• Advantages: 

– Change size easily and constantly 

– Insertion and deletion can easily happen 
anywhere in the Linked List 

– Only one node needs to be contiguously stored 

• Disadvantages: 

– Can’t access by index value 

– Requires management of memory 

– Pointer to next node takes up more memory 
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Nodes 
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Nodes 

• A node is one element of a Linked List 

 

• Nodes consist of two main parts: 

– Data stored in the node 

– Pointer to next node in list 

 

• Often represented as classes 
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data 
 
 

link 
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Code for Node Class 

class Node 

{ 

    String name; 

    int    testGrade; 

    Node  *link; 

 

    // constructor 

    // accessors 

    // mutators 

}; 
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link 

testGrade 

name 

link can point to other nodes 

two options: 
1. another Node 
2. NULL 

NULL 
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Linked List Overview 
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Example Linked List 
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NULL 

link 

DUMMY 

DUMMY 

link 

testGrade 

name 

link 

testGrade 

name 

link 

testGrade 

name 

link 

m_head 
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Important Points to Remember 

• Last node in the Linked List points to NULL 

 

• Each node points to either another node in 
the Linked List, or to NULL 

– Only one link per node 
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Managing Memory with LLs 

• Hard part of using Linked Lists is ensuring that 
none of the nodes go “missing”  

 

• Think of Linked List as a train 

– (Or as a conga line of Kindergarteners) 
 

• Must keep track of where links point to 

• If you’re not careful, nodes can get lost in 
memory (and you have no way to find them) 
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Linked List Functions 

• What functions does a Linked List  
class implementation require? 

 

• Linked_List constructor 

• insert() 

• remove() 

• printList() 

• isEmpty() 
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Linked Lists’ “Special” Cases 

• Linked Lists often need to be handled 
differently under specific circumstances 

– Linked List is empty 

– Linked List has only one element 

– Linked List has multiple elements 

– Changing something with the first or last node 
 

• Keep this in mind when you are coding 

– Dummy nodes alleviate some of these concerns 
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Creating a Linked List 
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Traversing the List 

• To control our traversal, we’ll use a loop 

– Initialization, Termination Condition, Modification 

1. Set CURR to the first node in the list 

 

2. Continue until we hit the end of the list (NULL) 

 

3. Move from one node to another  
(using m_next) 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT CURR NULL 

link 

91 

Bob 

link 

94 

Eve 

NULL 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 



www.umbc.edu 

Demonstration of Traversal 

link 

DUMMY 

DUMMY 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 

    // ignore, dummy node 

 



www.umbc.edu 

link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 

    // print information (Bob) 

 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 

    // print information (Eve) 

 



www.umbc.edu 

link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 

NULL 
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link 

DUMMY 

DUMMY 

Demonstration of Traversal 

FRONT 

link 

91 

Bob 

link 

94 

Eve 

NULL 

CURR 

for (CURR = FRONT; CURR != NULL; CURR = CURR->link) { 

NULL 

 
}  // exit the loop 
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Insertion and Deletion 

35 
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Announcements 

• Project 3 is out – get started now! 

– It is due Thursday, March 31st 
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